SDF1/CXCR4 signalling regulates two distinct processes of precerebellar neuronal migration and its depletion leads to abnormal pontine nuclei formation.

نویسندگان

  • Yan Zhu
  • Tomoko Matsumoto
  • Sakae Mikami
  • Takashi Nagasawa
  • Fujio Murakami
چکیده

The development of mossy-fibre projecting precerebellar neurons (PCN) presents a classical example of tangential neuronal migration. PCN migrate tangentially along marginal streams beneath the pial surface from the lower rhombic lip to specific locations in the hindbrain, where they form precerebellar nuclei. Among them, the pontine neurons follow a stereotypic anteroventral-directed pathway to form the pontine nuclei in the pons. The guidance mechanisms that determine the marginal migration of PCN and the anterior migration of pontine neurons are poorly understood. Here, we report that a chemokine SDF1 (also known as CXCL12) derived from the meningeal tissue regulates the migratory pathways of PCN. PCN are chemoattracted by the meningeal tissue, an effect that is mimicked by an SDF1 source. Analysis of knockout mice for the Sdf1 receptor Cxcr4 shows that both the marginal migration of PCN and the anterior migration of pontine neurons are disrupted. We provide further evidence that SDF1/CXCR4 signalling regulates these two processes cell-autonomously. As a result of disrupted neuronal migration, pontine nuclei formation was highly abnormal, with the presence of multiple ectopic pontine clusters posteriorly. The ectopic pontine clusters led to ectopic collateral branch formation from the corticospinal tract. Our results together demonstrate crucial roles for SDF1/CXCR4 in multiple aspects of PCN migration and highlight the deleterious consequence of derailed migration on proper nuclei formation. Furthermore, we provide the first in vivo evidence that pontine neurons themselves induce collateral branching from the corticospinal axons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Long Journey of Pontine Nuclei Neurons: From Rhombic Lip to Cortico-Ponto-Cerebellar Circuitry

The pontine nuclei (PN) are the largest of the precerebellar nuclei, neuronal assemblies in the hindbrain providing principal input to the cerebellum. The PN are predominantly innervated by the cerebral cortex and project as mossy fibers to the cerebellar hemispheres. Here, we comprehensively review the development of the PN from specification to migration, nucleogenesis and circuit formation. ...

متن کامل

Direct visualization of nucleogenesis by precerebellar neurons: involvement of ventricle-directed, radial fibre-associated migration.

Nuclei are aggregates of neurons distributed in the central nervous system and are fundamental functional units that share anatomical and physiological features. Despite their importance, the cellular basis that leads to nucleogenesis is only poorly understood. Using exo utero electroporation with an enhanced yellow fluorescent protein (EYFP) gene, we show that the precerebellar neurons derived...

متن کامل

The chemokine SDF1 regulates migration of dentate granule cells.

The dentate gyrus is the primary afferent pathway into the hippocampus, but there is little information concerning the molecular influences that govern its formation. In particular, the control of migration and cell positioning of dentate granule cells is not clear. We have characterized more fully the timing and route of granule cell migration during embryogenesis using in utero retroviral inj...

متن کامل

A point mutation in the motor domain of nonmuscle myosin II-B impairs migration of distinct groups of neurons.

We generated mice harboring a single amino acid mutation in the motor domain of nonmuscle myosin heavy chain II-B (NMHC II-B). Homozygous mutant mice had an abnormal gait and difficulties in maintaining balance. Consistent with their motor defects, the mutant mice displayed an abnormal pattern of cerebellar foliation. Analysis of the brains of homozygous mutant mice showed significant defects i...

متن کامل

Expression of the chemokine receptor Cxcr4 mRNA during mouse brain development.

The expression of Cxcr4 mRNA that encodes the receptor for the chemokine Sdf1 was studied during mouse brain development using in situ hybridization, from E9.5 to maturity at P21. At embryonic stages, expression is prominent in ventricular zones of stem cell proliferation. This abates during the postnatal period in parallel to the depopulation of ventricular zones. In addition, the Cxcr4 gene i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 136 11  شماره 

صفحات  -

تاریخ انتشار 2009